
GEOPHYSICS, VOL. 56, NO. 4 (APRIL 1991); P. 472482. I I FIGS. 

Bounding seismic velocities using a tomographic method 

D. W. Vasco* 

ABSTRACT 

Traveltime data are used to determine upper and 
lower bounds on velocity variations in the earth by an 
iterative method. In effect, the range of models is 
found which is consistent with the data, rather than a 
single model which is “best fitting” in some sense. 
The algorithm used, a variant of the row-action algo- 
rithms commonly applied to tomographic inversions, 
requires little in-core memory and has proven feasible 
for data sets of the order of hundreds of thousands to 
a million traveltimes. Any inequality constraint, such 
as that the velocity is always positive, may be incor- 
porated into the formulation. Data errors can be in- 
eluded both locally (as strict constraints on each 
datum) and globally (as a constraint on a total error 
measure). The method may also be used to derive the 

velocity structure which results in the minimum e’ 
norm of the residual misfit. 

Data from the Grimsel crosshole experiment are 
used to map confidence bounds of 0.02 ms on 1521 
traveltime residuals into upper and lower bounds on 
seismic velocities. There is great variation in the 
widths of these bounds as a function of subsurface 
position from 0.1 to 0.9 km/s. The distributions of the 
bounds agree with the parameter resolution values 
found from a singular value decomposition (SVD) and 
suggest that a low-velocity mylonitic zone, seen in 
tomographic inversions of the traveltime data, is ade- 
quately imaged. Though the data were corrected for 
seismic anisotropy, significant alternating positive and 
negative velocity perturbations in poorly constrained 
quadrants of the crosshole region suggest that some 
residual anisotropy effects are still present. 

INTRODUCTION 

Tomographic inversions of seismic traveltime data are 

6c 
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frequently used to determine subsurface velocities. The 
usefulness of this method derives from the fact that the 
observed traveltimes Tare line integrals of the reciprocal of 
the velocity c (x, y, z) along a raypath R (x, y, z), 

T= 

The traveltime is nonlinearly related to the velocity since the 
raypath geometry depends upon the velocity structure. The 
problem may be linearized by fixing the raypaths [R (x, y, z) 
= R. (x, y, z)] using some initial velocity model co (x, y, z) 
and solving for some parameterized perturbations in velocity 
6c (Nolet, 1985; Vasco, 1986), 

In a tomographic experiment many sources transmit seis- 
mic energy to receivers distributed throughout a region. For 
each source-receiver pair, a linear equation relates the 
velocity perturbation parameters to the observed traveltime. 
The total set of observations determines a system of equa- 
tions which may be solved for velocity perturbations, ex- 
pressed in matrix-vector notation as 

t = I;v. (1) 

The M by N matrix G contains the influence of N parameters 
describing the velocity perturbations on the M traveltime 
observations. The vector on the left-hand side contains the 
traveltime residuals ti = STi = Tiobserved - T,calculated; the 
vector on the right contains the velocity perturbations from 
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the average structure vj = SC,;. This is often a very large 
system of equations, with M of the order of 106. Commonly, 
tomographic problems are even large enough to preclude 
storage of all the elements of G and ! in core memory. Two 
frequently used approaches for solving large linear systems 
of equations are a conjugate gradient-based algorithm 
(LSQR) (Paige and Saunders, 1982; Nolet, 1985; Scales 
1987) and row-action methods (ART, SIRT) (Herman and 
Lent, 1978a,b; Dines and Lytle, 1979; Lent and Censor, 
1980). Both formulations are iterative and row-active, i.e., 
they only operate on a single row of equations for a given 
iteration. Both the SIRT and LSQR algorithms have enabled 
seismologists to invert data sets on the order of millions of 
traveltimes for thousands to tens of thousands of unknown 
velocity parameters (Clayton and Comer, 1983; Spakman 
and Nolet, 1988). 

Once a solution to the inverse problem has been com- 
puted, it is necessary to assess the resulting velocity model. 
That is, how well the data determine the model parameters 
should be quantified. In addition, some estimate of the errors 
associated with the derived model parameters is desirable. 
Conventionally, this is accomplished through the formation 
of the generalized inverse (Aki and Richards, 1980; Menke, 
1984) from which the parameter resolution matrix and the 
parameter covariance matrix are derived. The parameter 
resolution matrix R relates the estimated subsurface struc- 
ture + to the “true” velocity structure, v,, 

$ = Rv, . 

The rows of 8 are averaging coefficients of the “true” 
subsurface velocity. When the problem is completely under- 
determined, the resolution matrix of the generalized inverse 
is written 

The superscript T signifies a matrix transpose. If & were the 
identity matrix, the subsurface velocity structure would be 
perfectly resolved. The parameter covariance matrix C,,,, is 
the result of mapping the errors in the data to the errors in 
the model parameters (Menke, 1984). For an underdeter- 
mined problem with statistically independent data with vari- 
ance 02, the estimated errors in the model parameters are 
given by 

for the generalized inverse (Aki and Richards, 1980; Menke, 
1984). 

For the large systems of equations associated with tomo- 
graphic problems, calculation of these matrices is often not 
feasible. The number of operations (additions and multipli- 
cations) involved in estimating the generalized inverse is of 
order N3 (Gill et al., l981), where N is the number of 
unknown parameters characterizing the velocity structure. 
There is also a problem in that a tradeoff exists between the 
model resolution and model covariance matrices which is a 
function of the damping associated with the generalized 
inverse (Aki and Richards, 1980). 

This paper takes another approach for assessing tomo- 
graphic models. Specifically, I present a technique for map- 
ping traveltime observations and their associated confidence 
bounds into upper and lower bounds on seismic velocities. 
There are a number of advantages to this approach. For a 
given discretization, data set. and error distribution, these 
bounds are unique. Also, this is a direct mapping from data 
and data confidence bounds to the range of subsurface 
velocities. The information contained in the bounds can be 
used, as would the model covariance matrix and the model 
resolution matrix, to assess a tomographic solution. In 
addition. the method may be used to evaluate the appropri- 
ateness of various possible discretizations for a given imag- 
ing problem. Furthermore, for a parameterization in terms of 
constant-velocity blocks, each bound constrains the velocity 
in a particular block, allowing one to focus on specific 
regions of interest. Finally, a significant advantage to this 
approach (discussed further in the following section) is that 
the bounds may be determined in a row-active manner, so 
that very large tomographic problems can be treated. 

VELOCITY BOUNDS 

The general technique for calculating velocity bounds, 
based on methods developed by Parker (1972, 1974, and 
1975) and Sabatier (1977a,b), has been described in Vasco 
(1986) and will only be briefly discussed here. The basic idea 
is to minimize or maximize a specific velocity perturbation 
parameter, say 71 , e.g., the jth block when using a discreti- 
zation in terms of constant velocity blocks. The possible 
velocity perturbations are constrained by the data and some 
confidence interval on the data, 

t-u5Gv5t+a. (2) 

The elements of the vector u are the fixed confidence bounds 
on individual datums. i.e., these are point confidence inter- 
vals. Alternatively, it is possible to constrain the data using 
a statistical confidence bound, 

t-es(;vst+e 

.M 

c r;sE 
i= I 

e 2 0. 

ej are nonnegative error variables and E is a bound on the 
total misfit. The elements of the vector e may be interpreted 
as the absolute values of the errors associated with the 
traveltime residuals. Hence, the value of E may be derived 
from the statistics of a sum of absolute values as presented 
by Parker and McNutt (1980). Specifically, they examined 
the statistical properties of the function 

where xi are independent normal random variables with zero 
mean and standard error Si. The quantity Ix;/ represents the 
nonnegative error variables ej introduced above. Parker and 
McNutt found the mean fi and variance var (m) of m, 
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ih = (2/~r)“~N, 

var (m) = (1 - 2h)N, 

as well as the probability that m is less than a given value E: 

P(m 5 E) = (2/7F)NiZ 
I 

e -x’xiz dNX. 
D 

The domain of integration D is defined by 

X; 20 

and 

N 

c x; 5 E. 

i= I 

These formulas can be used to find the quantity E such that 
P (m 5 E) is some specified value. 

Maximizing or minimizing the velocity perturbation 77 
subject to the above linear inequality constraints, equation 
(2) or equation (3), is termed a linear programming problem. 
The standard algorithm for solving such linear programming 
problems, the simplex algorithm (Dantzig, 1963; Murtagh 
and Saunders, 1978), is not suitable for really large tomo- 
graphic problems. It does not operate in a row-active manner 
and requires a prohibitive core memory allocation for such 
problems. Thus, it suffers from the same limitations as the 
calculation of the resolution and covariance matrices. Fur- 
thermore, the number of mathematical operations required 
to solve a linear programming problem via the simplex 
algorithm is an exponential function of the number of un- 
knowns, which grows rapidly with problem size. For these 
reasons I have developed the following row-action algorithm 
to solve the linear programs presented above. Because it 
only operates on a single row of G per iteration, large 
traveltime data sets may be considered. 

ITERATIVE ALGORITHM FOR CONSTRUCTING 
VELOCITY BOUNDS 

The iterative algorithm detailed below is based on two 
mathematical points: (a) under certain conditions the solu- 
tion of a linear programming problem will be identical to the 
solution of a quadratic perturbation of the same problem 
(M,angasarian and Meyer, 1979; Mangasarian, 1981); (b) 
there exists an iterative procedure for solving the resulting 
quadratically perturbed problem which only requires the 
storage of one row of G per iteration (Hildreth, 19.57; 
Herman and Lent, 1978a; Lent and Censor, 1980). The 
resulting algorithm is only slightly more complicated than 
row-action techniques presently used to solve tomographic 
problems. The necessary conditions, presented with the details 
of the algorithm, hold for the linearized traveltime problem. 

Mangasarian and Meyer (1979) have proven that if the 
linear program 

min c7v (4) 

subject to 

has a solution, there exists a positive number E, such that for 
0 5 E 5 E the solution of the quadratically perturbed problem 

E 

min - V’QV + erv 
2 - 

subject to 

is also the solution of the linear program. The bound u 
represents the other side of the inequalities in equation (2), 
i.e., t + u for the local constraints. For the statistical 
constraints [equation (3)], the generalizations of 5;, v, and u 
are straightforward. The value of E is related to the Lagrange 
multipliers of the problem (Mangasarian and Meyer, 1979). 
For our linearized traveltime formulation [equation (l)] to 
hold, the velocity perturbations must be small, of the order 
of 10 or 20 percent, relative to the background velocity. 
Under such conditions the quadratic terms in the quantity to 
be minimized are small relative to the linear terms if the 
elements of Q and c are of order unity. For the computation 
of velocity bounds considered here, the elements are unity 
and so the solution of the quadratic perturbation will be an 
adequate approximation to the solution of the linear pro- 
gramming problem. 

It remains to solve the perturbed quadratic problem for the 
bounds on velocity Iequation (5)]. Lent and Censor (1980) 
have shown how to write the quadratic optimization problem 
in the form of a norm minimization problem. Once the 
optimization problem has been so transformed, a row-action 
algorithm may be devised to solve it. Consider the quadrat- 
ically perturbed optimization problem 

1 
min - vlQv + crv 

2 - 

subject to 

where Q is any positive definite matrix and v is a vector in 
R”. In what follows, the elements of Q have been scaled by 
E. The matrix Q has a Choleski decomposition Q = &r&, 
where & is a lower triangular matrix, and so the transforma- 
tion 

,J=L-‘~ - Q - Ic 

results in the following norm minimization form for the 
problem (Lent and Censor 1980), 

1 
min - xTx 

2 

subject to 

where 4 = Q& -’ , b = u + I;Q -‘c. This form is limiting for 
optimization of general quadratic functions because Q-’ and 
Cm’ must be calculated but, as shall be seen, it is entirely 
adequate for our approximate linear programming problem. 

Herman and Lent (1978a) presented an iterative row- 
action procedure for solving the norm minimization problem 
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subject to general inequality constraints and simple interval is a minimum. Such a model is the solution of the following 
constraints on the variables linear programming problem: 

min x’x 

subject to 

M 
min C (X; + yi) 

I= I 

e, SaTxs~;, i= 1,2, . . . ,M 

ijjxj<pj, j=1,2,...,N. 

subject to 

Here, aTx denotes the inner or dot product of the ith row of 
.$ with the vector x. Upper and lower bounds are given by ui 
and ei for the general linear constraints and by kj and hj for 
the interval constraints (a priori upper and lower bounds) on 
the velocities. Herman and Lent’s formulation, based on an 
algorithm proposed by Hildreth (1957), introduces no new 
variables and involves computationally simple operations. 
First, initialize the vector x and a subsidiary vector z, whose 
elements are known as dual variables, 

Gv-x+y=t, (7) 

Xj 2 0.y; 20, i= 1, M, 

where G, v, and t are defined as in equation (1). The 
variables xi and yi are nonnegative quantities which may 
take any value. Such a solution is less affected by outliers in 
the data t than is the least-squares (the minimum e2 residual 
norm) solution (Claerbout and Muir, 1973), and such a result 
is termed a robust estimate (Press et al., 1986). 

x0 = 0 

zo = 0. 

Then update these vectors at each iteration, for the ith row 
and the kth update, 

Xk + ’ = Xb + SCkai (6) 

zk + ’ zz z/‘ + &. Ir 

where ej is a vector in which the only nonzero element is a 
1 in the ith position, ck is the median value of three elements, 

_q! = 

i 

hj 
xt;5h. 

J 

X” 
J 

hJ ~.X~~~j. j= 1,2,...,N. 

h 
pj 5 XJ” 

The factor s is termed the relaxation parameter and lies 
within the range 0.5 5 s % 2.0. In some situations s can 
significantly enhance the rate of convergence of the algo- 
rit’hm. The convergence of this algorithm with the relaxation 
parameter equal to 1 .O has been proven by Herman and Lent 
(1978a). When s # 1.0, convergence has only been proven 
for the general inequalities of equation (5) (without interval 
constraints). Thus, for a range (possibly infinite) of E, a 
row-action method can be used for linear programming. In 
this case the matrix Q is given by E!, a scaled identity matrix, 
and so Q-’ and &-’ are trivially determined. 

The iterative algorithm presented above may also be used 
to construct a model that minimizes the e’ norm of the 
residuals (Gill et al., 1981), that is, to find the model v for 
which 

To compare results of the iterative procedure developed 
here with simplex method solutions, a synthetic data set was 
created (Figure 1). A linear trend of 0.5 km/s velocity 
perturbations (darkened squares) diagonally cross a con- 
stant-velocity background of 5.3 km/s. A large number of 
raypaths sample the region, though the ray coverage is 
highly nonuniform. The confidence bounds on the data were 
arbitrarily set at 10 percent of the, maximum traveltime 
residual for this comparison. The resulting traveltime resid- 
uals and the set of confidence bounds were used to compute 
upper bounds on possible velocity perturbations. The data 
confidence bounds were applied as point intervals, in the 
form of the system of equations (2). Figure 2 contrasts 
solutions from the simplex and the iterative row-action 
methods. The high-velocity zone from the center left to the 
lower right is clearly visible in both solutions. In general, the 
iterative row-action method gives very similar results to the 
simplex approach. The maximum upper bound of 0.63 km/s 
from the iterative method is very close to the maximum of 
0.64 km/s produced by the simplex algorithm. The small 
differences were due to incomplete convergence because the 
algorithm was stopped after 30 iterations. Thus, this syn- 
thetic test gives us confidence in the iterative algorithm. 

THE GRIMSEL CROSSHOLE EXPERIMENT 

Experiment description 

The Grimsel Rock Laboratory (GRL), operated by the 
Swiss National Cooperative for the Storage of Radioactive 
Waste (NAGRA), studies the effects of fractures on nuclear 
waste storage. A cooperative experiment between NAGRA 
and the Department of Energy’s Lawrence Berkeley Labo- 
ratory was devised to demonstrate the applicability of seis- 
mic tomographic methods for fracture detection (Majer et 
al., 1990). The experiment provided an excellent opportunity 
to test the above algorithms on a realistic problem. Further- 
more, the data set was small enough to allow the computa- 
tion of the covariance and resolution matrices for compari- 
son with the velocity perturbation bounds. 

M N 

C C Givi - tj 

j= I 
I I 

i= I 

The laboratory is situated within granitic rock containing a 
foliation, defined by aligned grains of biotite, which strikes 
northeast and dips about 65 degrees to the southeast (Majer 
et al., 1990). In addition, a linear fabric is defined by 
elongated feldspar grains which parallel the foliation, giving 
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FIG. 1. (Left panel). Synthetic tomographic test problem. The discretization of the region into constant-velocity 
blocks is shown. The solid filled blocks contain positive velocity perturbations of 0.5 km/s. (Right panel). Raypath 
geometry and discretization for the synthetic tomographic problem. 

SIMPLEX UPPER BOUNDS ROW-ACTION UPPER BOUNDS 
0.0 0.0 

21. 21 
0.0 10.0 0.0 10.0 

DISTANCE SOUTH (Ml DISTANCE SOUTH (M) 

FIG. 2. (Left panel). Velocity upper bounds generated by the simplex algorithm. (Right panel). Upper bounds 
produced by the iterative row-active algorithm [equation (6)] for linear programming. 
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rise to a seismic anisotropy which has been estimated to be 
10 percent (Majer et al., 1990). The study region is inter- 
sected by a 5 m thick mylonitic fracture zone (Figure 3) 
aligned with the foliation. From wall exposures and borehole 
information the overall structure of this shear zone, which 
consisted of a network of braided fractures, was known. The 
shear zone was expected to appear on any tomographic 
inversion of the Grimsel traveltime observations. 

The experimental setup, shown in Figure 3, consisted of 
two north-south oriented tunnels which were connected via 
two subhorizontal boreholes (BOFR 87.001 and BOFR 
87.002). The boreholes, 21.5 m long and separated by 10.0 m, 
contained P-wave sources spaced 0.5 m apart. Three-com- 

FIG. 3. Experimental setup for the Grimsel crosshole exper- 
iment (from Majer et al., 1990). The study region is bounded 
by two boreholes (BOFR 87.001 and BOFR 87.002) as well 
as by two access tunnels on the east and west edges. A 
mylonite shear zone is indicated by shading. The solid lines 
within the shear zone are hypothesized fracture orientations 
based on borehole measurements and extrapolations. 
1.0 cm = 3.6 m. 

FIG. 4. (Left panel). Observed traveltimes versus source- 
receiver distance. All 1521 traveltime values are plotted as 
points. (Right panel). Traveltime residual histogram. 

ponent accelerometers were also clamped within the bore- 
holes, at the same interval, and their output digitized at 
250 000 samples/s. To account for the known anisotropy, 
P-wave traveltimes were corrected by removing a low-order 
trigonometric function of ray azimuth from the arrival times 
(Backus, 1965). The correction removed a constant back- 
ground anisotropy of nearly 10 percent. The resultant trav- 
eltimes had a strong linear trend as a function of source- 
receiver spacing, with a slope of 5.3 km/s (Figure 4). This 
slope was used to derive an initial background velocity to 
which velocity perturbations were referenced. The linearity 
of the time-distance plot suggests that an assumption of 
straight raypaths is valid. A histogram of traveltime residu- 
als, computed relative to the constant background velocity, 
is shown in Figure 4. The mean of the residual distribution is 
0.007 ms and the standard deviation is 0.026 ms. The 
distribution has clear non-Gaussian features including bimo- 
dality and no tail. The non-Gaussian features observable in 
Figure 4 are likely due to structural factors such as devia- 
tions from the initial velocity model. 

The peak transmitted energy was 5000 to 10 000 Hz, 
resulting in approximate wavelengths of about 1.0 to 0.5 m 

GRIMSEL RAY COVERAGE 
0.0 

21._ 
0.0 10.0 

DISTANCE SOUTH (M) 

0 RAY DENSITY 270 

FIG. 5. Grimsel ray coverage. The discretization of the 
region used for the inversion (10 blocks along the north- 
south direction, 20 blocks along the east-west direction) may 
also be seen in this figure. 
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given the background velocity. The region in Figure 3 was 
discretized into a 10 (north-south) by 20 (east-west) grid with 
respective block dimensions of 1 .OOO by 1.075 m, the same 
order as the predominance wavelength. The total number of 
source-receiver pairs used in this study was 1521, producing 
excellent ray coverage (Figure 5) except at the extreme 
eastern and western edges. The ray coverage is nonuniform 
with many rays intersecting the center of the rectangular 
region, away from the four corners. Ray densities of up to 
270 rays per block are achieved in this area. The blocks with 
the poorest coverage form rough V-shaped areas emanating 
from the eastern and western ends of the site. Constraints on 
block velocity often depend upon other factors besides ray 
density, such as the angular span of the rays through a given 
block. In addition, if a particular block is sampled only by 
raypaths traveling through many other blocks, tradeoffs in 
block velocities can occur. 

the easternmost and westernmost edges of the GRL area. 
The parameter covariances (Figure 6) are more uniformly 
distributed, with all standard errors equal to or less than 0.1 
km/s. The very low errors at the extreme east and west ends 
of the region occur because no rays traverse the blocks 
there. Therefore, they are not considered in calculating the 
resolution and covariances and the values are set to zero. 

The generalized inverse was used to construct a solution 
incorporating the same singular value cutoff (Figure 7). The 
southeast comer is a region of high velocities, as is the 
northwest comer. Two low-velocity zones are seen extend- 
ing from the northeast and north-central regions to the 
southwest. The velocity decrease of these zones is greater 
than -0.5 km/s, about five times greater than the errors 
found there. Thus, the mylonitic shear zone in this image is 
significant though somewhat obscured by the other features. 

SVD, LSQR, and e’ solutions 

Because the data set was small enough to compute the 
generalized inverse, the resolution and covariance matrices 
could be calculated for this problem. This was accomplished 
using the singular value decomposition (SVD) of the matrix 
G in equation (1) (Aki and Richards, 1980; Menke, 1984; 
Press et al., 1986) to form the generalized inverse. Singular 
values less than 1/20th of the maximum singular value were 
set to zero, a rather stringent cutoff, to achieve adequate 
parameter resolution and satisfactory parameter errors. The 
resolution of the block velocities is fairly high (Figure 6) and 
when the full matrix was examined there appeared to be little 
tradeoff between blocks. The poorest resolution is found at 

To see the variability possible in different tomographic 
solutions, consider the LSQR inversion and the solution 
which minimizes the e’ norm of the residuals (Figure 8). In 
the LSQR result, low velocities form a zone from the north 
center to the southwest, probably representing the mylonitic 
shear zone. The high-velocity zone in the southeast, seen in 
the SVD model, is visible in this solution also, evidence that 
it is not an artifact of the inversion algorithm. The maximum 
and minimum velocities for the LSQR solution were located 
on the eastern and western edges of the model, unlike the 
SVD solution. This is likely due to the stringent singular 
value cutoff used in the SVD algorithm damping out these 
large, poorly determined velocity perturbations. The mini- 
mization of the e ’ norm of the residuals is accomplished 
using the row-action linear programming algorithm to solve 

GRIMSEL MODEL RESOLUTION GRIMSEL MODEL ERRORS 
0.0 0.0 

21. 21. 
0.000 10.0 0.0 10.0 

DISTANCE SOUTH (M) DISTANCE SOUTH (M) 

FIG. 6. (Left panel). Diagonal elements of the resolution matrix displayed in their corresponding geographic 
position. (Right panel). Square root of the diagonal elements of the covariance matrix, an estimate of the standard 
error. 
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the system of equalities and inequalities described earlier 
[equation (7)]. It took no more time to find this solution than 
to compute the LSQR solution. One can see similar features 
between this velocity model and the SVD-derived model. In 
particular, a zone of low velocities in the central region is 
discernible, as are the areas of high velocity in the southeast 
and northwest. The features are also coincident with those of 
the LSQR velocity model. Absent in the SVD model are the 
low-velocity perturbations present in the northeast and 
southwest quadrants of both the LSQR and the minimum e’ 
residual norm solutions. In addition, there are differences in 
the continuity of the two linear low-velocity features extend- 
ing from the northeast and north central edges of the region 
to the south central and southwestern edges, respectively. 
Thus, the three models LSQR, SVD, and e’ contain some 
similarities as well as differences. 

Velocity bounds 

Given the differences in the above solutions, definitive 
statements can still be made about solutions satisfying the 
traveltime data. The iterative row-action method described 
earlier was used to construct statistically based upper and 
lower bounds on the velocity perturbations, i.e., the maxi- 

GRIMSEL SVD MODEL 
0.0 

NE SE 

\ 

NW SW 
21.5 

0.0 \ 10.0 

DISTANCE SOUTH (k4) 

FIG. 7. Generalized inverse, computed using an SVD decom- 
position. The orientation and boundaries of the mylonite 
shear zone extend from the plot as diagonal lines. 

mum and minimum possible perturbation in each block, 
subject to the constraints that the traveltime observations 
are satisfied within a specified confidence bound. The value 
of (T, one-half of the confidence interval, was chosen by an 
analysis of the traveltime residuals. The standard errors 
associated with the traveltime residuals from the LSQR 
model (Figure 9) were used as estimates of the random errors 
of the traveltimes. Implicit in this approach is the assump- 
tion that the LSQR model is able to remove all velocity 
structure effects from the residuals. That this is not exactly 
so can be seen in the histogram of Figure 9. When the 
velocity perturbations from the LSQR solution were added 
to the background velocity and used to compute the travel- 
time residuals, the residual distribution shown in Figure 9 
resulted. Some of the features in the original residuals 
(Figure 4) are no longer present here. Slight tails have been 
introduced and the distribution is now skewed very slightly 
to the left due to the fact that straight raypaths (nonminimum 
time paths) were used to compute the residuals. The stan- 
dard error associated with the distribution of residuals has 
been reduced to 0.02 ms. 

The statistical confidence intervals of equation (3) were 
used to constrain the range of possible models. That is, each 
data point is not required to lie within its respective bounds. 
Instead, it is the total misfit of the traveltime data which is 
bounded. One standard error, as used in the formulas 
presented in Parker and McNutt (1980), was used to derive a 
value for E, the statistical error bound. The probability that 
the given data lie in the interval was set to 0.68 by specifying 
the appropriate value of E. A priori bounds on the velocity 
perturbations were applied 

- I .5 km/s I u 5 2.0 km/s 

as additional inequality constraints in equation (3). These 
were arrived at by considering the maximum possible veloc- 
ity perturbations in the three derived solutions (Figures 7 
and 8). Such limits proved useful in controlling tradeoffs 
between blocks on a given raypath. Under these constraints, 
the lower bound on the velocity in each block was succes- 
sively computed. The lowest velocity bounds are found in 
the eastern and western portions of the study area. The 
high-velocity perturbations in the southeast and northwest 
also appear in the bounds. The upper bounds were also 
derived, and there was a wide range in values from -0.7 
km/s to 1.1 km/s. Regions of large positive velocity bounds 
are found in the northwest and southeast as in the lower 
bounds, SVD, and LSQR solutions. Significantly, blocks in 
the north-central and south-central areas are required to 
contain negative velocities, consistent with the derived 
velocity models, which contained low-velocity zones in 
those regions. 

The mean value of the bounds, one-half of the upper plus 
the lower velocity bounds (Figure lo), may be compared to 
the solutions of the tomographic problem using the SVD 
technique (Figure 7), the LSQR method, and the minimum 
e’ residual norm algorithm (Figure 8). Again, alternating 
positive and negative velocity perturbations are found in the 
corners of the model. Only vague suggestions of the two 
low-velocity zones, linearly trending southwest, are visible 
in this figure. The half-width of the bounds, i.e., one-half the 
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upper bounds minus the lower bounds, should correlate 
somewhat with the standard errors and resolution of the 
model parameters. To check this, I computed one-half the 
difference between the computed upper and lower bounds 
which is shown in the right panel of Figure 10. In general 
there is good agreement between the bound half-widths and 
the parameter resolution shown in Figure 6. The widest 
possible ranges in velocity perturbation are found in the 
eastern and western edges, the maximum values of over 0.9 
km/s. The half-width of the bounds, in the region away from 
the eastern and western edges, ranged from 0.1 km/s to 0.2 
km/s which was slightly larger than, but of the order of, the 
standard errors computed from the SVD-based covariance 
estimates (0.06 km/s to 0.09 km/s). The differences between 
the two are due to the singular value cutoff used in the SVD 
decomposition as well as the value of E taken in equation (3). 
There is also only a rough correlation between the half-width 
of the bounds on the velocities and the ray-density distribu- 
tion shown in Figure 5. The bounds are not as symmetric as 
the ray densities due to the asymmetry of the traveltime 
residuals, which introduce a varying signal-to-noise ratio 
within the data set. Thus, ray-density diagrams cannot be 
used to infer detailed confidence bounds on the velocity 
structure. 

As an alternative to the statistical bounds discussed 
above, one can consider the bounds which result when point 
confidence bounds are placed on the data [constraints of 
equation (2)]. To specify that all the data must lie exactly 
within specified intervals is a very stringent requirement. 
The probability of this occurring is given by the product of 
probabilities that each datum lie within its confidence inter- 

GRIMSEL LSQR MODEL 

val. For many data with Gaussian errors, wide confidence 
intervals must be placed on the data in order not to constrain 
the models unduly. In applying the technique to the Grimsel 
traveltime data, three standard errors were used as confi- 
dence intervals on the observations (0.06 ms). The probabil- 
ity that a given data point lies in this interval is 0.997. As 
might be expected, the resulting confidence bounds were 
quite large, with half-widths ranging from 0.4 km/s to 1.4 
km/s. Perhaps the local bounds would be more useful for 
highly underdetermined problems with few data. 

DISCUSSION AND CONCLUSIONS 

A tomographic method has been presented for the com- 
putation of the range of velocities consistent with observed 
seismic traveltimes and their accompanying confidence 
bounds. The technique requires the same computer re- 
sources, memory, and disk space as the standard row-action 
methods for traveltime tomography. The amount of time
required to compute each block bound is of the same order 
as that required for the determination of a velocity model 
using a row-action tomographic algorithm. The iterative 
algorithm is no more complex than row-action approaches to 
tomographic inversion and may be programmed without 
difficulty. Upper and lower bounds can be computed itera- 
tively and may be used to estimate the uncertainties on 
velocity structure. The bounds derived compare favorably 
with those computed using the simplex algorithm for linear 
programming. 

A variety of inversion algorithms were applied to cross- 
hole data from the Grimsel mine experiment. The methods 

GRIMSEL Ll MODEL 

FIG. 8. Two solutions for the velocity perturbations in the Grimsel area: a conjugate gradient-based (LSQR) solution 
(left panel) and the velocity perturbations which minimize the 8’ norm of the residual misfit (right panel). As in 
Figure 7, the mylonite shear zone is indicated on both panels. 



Bounding Seismic Velocities 481 

produced varying images of the velocity structure due to 
inherent properties of each algorithm. The SVD and LSQR 
solutions require that the errors on the data are Gaussian; 
deviations from this will have a pronounced effect on the 
images. The f!’ minimum residual norm solution is less 
sensitive to non-Gaussian errors, specifically outlying trav- 
eltime residuals, as caused by blunders in picking arrival 
times. To assess the solutions, upper and lower velocity 
bounds were computed for the subsurface distribution. The 
width of the bounds correlated well with the resolution and 
errors of the model parameters and with the ray density in 
the blocks. The bound means and half-widths indicate that 
the mylonitic zone is imaged in this experiment, with a range 
in velocity perturbations of 0.1 to 0.2 km/s possible. Signif- 

FIG. 9. (Left panel). Traveltime residuals computed relative 
to a back-ground velocity of 5.3 km/s with the LSQR model 
velocity perturbations added. (Right panel). Residual travel- 
time histogram when the velocity perturbations from the 
LSQR model (Figure 8) are added to the background veloc- 
ity of 5.3 km/s and the result is used as a velocity model with 
which to compute traveltimes. 

STATISTICAL BOUND MEAN 

icant positive and negative velocity perturbations appear in 
each alternate quadrant of the LSQR and minimum e’ 
residual norm solutions as well as in the mean statistical 
velocity bounds. An examination of the velocity perturba- 
tion bound widths (Figure 10) indicates that velocity pertur- 
bations in these quadrants are poorly constrained by the 
data. The symmetry of the velocity perturbation pattern 
there, identical to the calculated seismic anisotropy, indi- 
cates that some anisotropy is mapped into the solution. 
Specifically, velocity anisotropy is being mapped into the 
poorly resolved regions of these models. This points to the 
difficulty of separating lateral heterogeneity which contains 
inherent symmetry from seismic anisotropy due to factors 
such as crystal orientation and the need to invert for anisot- 
ropy as well as for lateral heterogeneity. 

One parameter in the iterative scheme not discussed is the 
relaxation parameter s which appeared in the row-action 
algorithm [equation (6)]. Unfortunately, there is no general 
formula for estimating s other than the constraint that it lie 
between 0.5 and 2.0. To determine the effect of variations of 
s on the convergence of the algorithm, a single block (block 
95, row 10, column 5) was examined. The lower bound for 
this block was computed using the formula in equation (6) 
with various values for s. The values of the bounds as a 
function of the iteration number for s equal to 0.75, 1 .OO, and 
1.50 are shown in Figure 11. Clearly, the ultimate conver- 
gence does not depend strongly on the exact value of s. 
However, if properly chosen, the rate of convergence can be 
somewhat enhanced. 

Velocity bounds may be computed for very large data sets 
such as the EC traveltimes (Vasco et al., 1989). Such 
problems may involve hundreds of thousands to a few 

STATISTICAL BOUND WIDTH 

. , I  

FIG. 10. (Left panel). Mean value of the statistical velocity bounds. (Right panel). Half-width of the statistical 
velocity bounds: (upper - lower)/2. The mylonite shear zone is denoted by the arrows. 
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FIG. 11. Convergence of the algorithm for block 95 (row IO. 
column 5) for various relaxation parameter s values. 

million raypaths, and hence it is not possible to compute the 
generalized inverse or the resolution and covariance matri- 
ces. The iterative computation of bounds may prove to be 
one of only a few ways to estimate uncertainties on large- 
scale tomographic solutions. 
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